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COMPUTATION OF CONTINUED FRACTIONS 
WITHOUT INPUT VALUES 

P. SHIU 

ABSTRACT. An algorithm for the computation of the continued fraction ex- 
pansions of numbers which are zeros of differentiable functions is given. The 
method is direct in the sense that it requires function evaluations at appropri- 
ate steps, rather than the value of the number as input in order to deliver the 
expansion. Statistical data on the first 10000 partial quotients for various real 
numbers are also given. 

1. INTRODUCTION 

There is a well-known simple algorithm for the development of a real number 
a into a continued fraction. Regardless of how a has been specified, its actual 
value is required as an input for the algorithm, which terminates if and only if 
a is rational. In practice, when the algorithm is applied to an irrational number 
a, an input rational approximation for a has first to be computed. This input 
value is often given as a truncated digital approximation, on which exact rational 
arithmetic is then performed to deliver the continued fraction expansion. When 
there are many digits in the input value, the arithmetic involved in obtaining the 
expansion is rather tedious, especially in the initial stages of the algorithm. This 
is because exact integer-arithmetic has to be carried out on very large numbers 
at each stage in order to preserve the complete quotient, which is required for 
the calculation of the remaining partial quotients. In 1938 D. H. Lehmer [9] 
gave a modification of the algorithm by dividing the computations into a suitable 
number of sections, inside which the arithmetic involved is more manageable, so 
that the modified algorithm can be executed much more speedily. Nevertheless, 
the computation of a large number of partial quotients for a given real number 
a is still a difficult task, and for this and other reasons, A. J. van der Poorten and 
J. Shallit [14] have remarked that "It is notorious that it is generally damnably 
difficult to explicitly compute the continued fraction of a quantity presented in 
some other form." 

It was proved by Lagrange that a necessary and sufficient condition for the 
sequence of partial quotients for a to be eventually periodic is that a is a 
quadratic irrational. Moreover, there is an efficient algorithm which, from the 
input of the three integer coefficients of the quadratic function defining a, 
determines the period and delivers all the partial quotients in the period for 
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a. Furthermore, once all the partial quotients have been found, it is easy to 
construct a subsequence of convergents which exhibits quadratic convergence 
to a; see, for example, [16]. This method of obtaining the continued fraction 
expansion for a without an input value is much superior to the method based on 
the input value, especially since there is no a priori knowledge on how accurate 
the input approximation has to be in order to deliver all the partial quotients 
in a period. Indeed, the length of the period cannot, or at least should not, be 
determined in this indirect way. 

Very little is known about the continued fraction expansion for a when it is 
algebraic with degree exceeding 2, or when it is transcendental. In particular, 
it is not known if the sequence of partial quotients associated with a = , 
or a = 7r, is bounded or not. Suppose that a has been defined as the zero of 
a differentiable function f(t), for which the values at rational points t can be 
computed with arbitrary accuracy. As we shall see, it is possible to compute the 
continued fraction expansion for a directly from f(t), instead of having first 
to compute an approximation to a from f(t) as an input. It will be conve- 
nient to call the original algorithm the basic method, Lehmer's modification the 
indirect method, and our new algorithm the direct method. The argument used 
in obtaining the direct method can be interpreted as an extension of that used 
by Lehmer, with the important difference that we have eliminated the need for 
an input value for a. We shall give a rational-arithmetic algorithm which de- 
livers the partial quotients for the continued fraction expansion for an algebraic 
number a of degree exceeding 2. The method also works for a transcendental 
number that has been defined as the zero of a function for which the logarithmic 
derivative at a rational point can be computed with arbitrary precision. 

A comparison in computing times being used shows that the direct method 
is superior in the following sense. Bearing in mind that function evaluations 
are required for the direct algorithm whereas external input values are readily 
supplied for the indirect algorithm, the computing times for a modest number 
of partial quotients using the two methods are similar, whereas it becomes pro- 
hibitively long for the basic algorithm. More specifically, when the algorithms 
have been implemented on a small machine, the computing time for 10000 par- 
tial quotients for an algebraic number is only a few minutes. The time taken 
for a transcendental number which is the zero of a function whose evaluation 
is not difficult, such as sin t, which has a zero at 7r, is also only a few minutes. 
We shall say more on the advantage of such modifications on the basic method 
in ?4, where we also mention the metric theory of continued fractions due to 
A. Khintchine, P. Levy and others (see [5, 6, 11]). Results of computations for 
the partial quotients for various real numbers are given in the last section. 

2. REMARKS ON LEHMER'S METHOD 

The basic method for the continued fraction expansion of a real number is 
essentially the same as the Euclidean algorithm for the computation of the great- 
est common divisor of two integers. Lehmer [9] explained his indirect method 
as a modification of the Euclidean algorithm applied to two real numbers. In 
fact, his argument can be simplified and the method further enhanced vy mak- 
ing use of an exact formula for the complete quotient. Let a be a real number, 
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and define the sequence of partial quotients (a,) for a by the iterative scheme 

1 
ao = a, aO = [a] an+l I , an+1 = [axn+1, n = O , 1, 2,5 ....5 

aen-an 

which terminates when an = an for some n, and this happens when and only 
when a is rational. This is the basic method for the delivery of the partial 
quotients, and, as an algorithm, the input value for a has to be a rational 
number, so that the algorithm will terminate. When this rational number has 
a large numerator and denominator, the arithmetic involved in the algorithm 
for an will be lengthy, and Lehmer's idea is that the initial section of values 
for an can still be obtained if we use as input an approximation with a smaller 
denominator, which will then speed up the calculations. Suppose now that an 

has been computed for n < N from an initial approximation to a, and we 
need further values for an. This will, of course, require a more accurate input 
value for a, and we need to apply it in such a way that the process can be 
continued by delivering the next section of partial quotients, namely those an 

for n > N. This can be achieved by calculating also the convergents to a, so 
that an updated version of the complete quotient can be calculated for the new 
input value for a. 

We use Perron's notation for continued fractions, and write 

a= [ao, al, ..., an, ...] =[ao, al, ..., an, an+1] 

where 
aen+ I = [an+l I an+2X***] 

is the (n + 1)st complete quotient for a. When the values an have been 
computed for n < N, we can use this formula for the complete quotient to 
find more partial quotients, provided we can have a good estimate for aN+1 . 

This good estimate can be obtained from the revised input approximation to a 
together with its last convergent XN/YN, which will also need to be computed. 
The convergents xn /yn are given by the iterative formula 

xo = ao, x = aoal+1, Xn+i = an+xn + Xn-I 

yo = 1, y, =a,, Yn+i = an+iYn + Yn-I 

and the formula relating the complete quotient and the convergent is 

Xn 1 
(1) Yn Yn(aYn +Yn I) ' a' 

= an+i 

from which a' can now be calculated from the new input value for a. Lehmer 
did not mention this exact formula for a', which would have given a simpler 
and better modification. For example, the analysis on exactly how many new 
partial quotients can be delivered from the updated value of the complete quo- 
tient can be much simplified, and we give this in the next section. The process 
can now be repeated in a systematic way, so that the calculations can be divided 
into sections, the number of which depends on the efficiency of the machine used 
in the execution of the algorithm. It has to be said that this modification of the 
basic algorithm will require the computation of the convergents as a by-product 
of the evaluation of the partial quotient, but there is still an overall gain in 
speed for the calculations, especially when many partial quotients are required, 
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because most of the operations with large numbers have been eliminated. In ?4 
we mention another useful and important point in the modification of the basic 
method. 

3. A DIRECT METHOD 

Let a be an algebraic number with degree k > 1, so that there is an ir- 
reducible polynomial f(t) of degree k, with integer coefficients, such that 
f(a) = 0 $ f'(a). If t $ a, then, by the mean value theorem, f(t) = 
f(t) - f(a) = (t - a)f'(fl), where f is some number lying between a and 
t. It follows that 

(2) It-al = I 
f,(t) 

which is related to Newton's method for the computation of a. The equation 
is also the basis of the argument used by Liouville to prove that a cannot be 
well approximated to an order which is beyond its degree k. For, if t = x/y, 
where x, y are integers, then ykf(t) = yk(x/y) is a nonzero integer, and so 
the right-hand side of (2) is at least Clyk, where the constant C can be chosen 
to depend only on a, because f'(f) is near f'(a) $ 0. Liouville's result has 
subsequently been extended by A. Thue and others, culminating in the famous 
Thue-Siegel-Roth theorem (see, for example, [2]). 

For our purpose, we simply apply (2) with t = x/y being a convergent for a, 
so that, according to (1), the next complete quotient can be calculated from the 
function f(t). More specifically, we now set t = Xnl/yn the nth convergent to 
a, so that by (1) we have 

(3) a' = an+1 -If ( f) Yn) I 

Here, fi is some number between a and tn = xn/yn, and the formula is to 
be used for the computation of a', from which new partial quotients an+1 
an+2, ... can be obtained. Thus, the need for new input values from an external 
source to calculate the complete quotient in the indirect algorithm has been 
eliminated by function evaluation in the direct algorithm. 

We remark that tn_- and tn lie on the opposite sides of a, so that we have 
bounds for a' by replacing fi with tn_- and tn in (3), and the computation 
of such bounds will involve only rational arithmetic. When the two bounds are 
developed into continued fractions, all the initial partial quotients that are in 
agreement must also be the leading partial quotients an+1 , an+2, ... for a'. 
Thus, many new partial quotients can be obtained in one single iterative step 
within which function evaluations are required. The difference between the two 
bounds is essentially 

If (a) - f (tn)l I_f_ (a)_ I 

Yn2 If (tn ) I Yn2 f(> 

so that a' can be computed to within B/yn2, where B depends only on a and 
not on n. We may therefore compute the partial quotients an+1 an+2, 
an+m until the last convergent x'/y' for a' still satisfies Ix'/y' - a' < B/y2. 
This shows that y' is of the order Yn, so that Yn+m is of the order y2. In 
other words, the subsequence of convergents x/y, obtained from iterations 
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requiring function evaluation, exhibits quadratic convergence to a. In fact, 
the method can be considered as a rational-arithmetic algorithm for the imple- 
mentation of Newton's method for the computation of a. In practice, we set 
/1 = tn, and develop a' in (3) into a continued fraction to obtain the partial 
quotients a,+l, a,+2, ... , an,, which is then used to update the convergents 
to x = xnl, Y = Yn1 , stopping for the next iteration which requires function 
evaluation when we reach Yn1 > byn2, for some small b = b(a) > 0. 

The analysis shows that the scheme works just as well for a transcendental 
number ca which is given as the simple zero of a twice differentiable function 
f(t), provided that we can calculate f(t) and f(t) to an arbitrary accuracy at 
rational points t. However, there are new considerations in the implementation 
of the algorithm, and we discuss these in ?5. Meanwhile, we mention that it 
may happen that f'(a) is rational, in which case there is only a problem in 
computing f(t) . For example, in our computation of the expansion for a = , 
we use f(t) = sin t, which has the simple zero at a, and we have f'(a) = -1. 

4. KHINTCHINE' S CONSTANT 

Suppose that we wish to compute the first N partial quotients for a certain 
real number a. As we remarked earlier, there is no a priori condition that 
will ensure that any precomputed value for a will be sufficiently accurate to 
deliver a1, ..., aN, using the basic method. This is because the sequence (an) 
may be unbounded, so that YN > a1 ... aN has no fixed upper bound, and 
hence l/y2 has no fixed positive lower bound for the determination of an 
appropriate accuracy for the input value for a. Nevertheless, A. Khintchine 
[5] has proved that, for almost all a in the sense of Lebesgue measure, the 
sequence of geometric means associated with the sequence of partial quotients 
for ca has a limiting value given by 

00 lgk o 

K I7 k(k + 2) 

Khintchine gave 2.6 for the value of this slowly convergent product, and D. H. 
Lehmer [10] supplied the analysis in the Euler-Maclaurin summation formula 
when applied to the logarithm of the product. However, Lehmer seems to have 
made an error in the calculation of the exponential function in the recovery of 
the product by giving the value 2.685550 for K, whereas we find that 

(4) K = 2.68545 20010 65306 44530 97148 35481.... 

P. Levy [11] has proved that, for almost all a, the sequence (Yl/fn) has the 
limit 

(5) L = exp(7r2/12 log 2) = 3.27582 29187 2181 1... 

Consequently, for almost all a, the number of partial quotients that can be 
obtained by the basic method with an input approximation having accuracy 
of m decimal digits will usually deliver n partial quotients, where n/m is 
about log L/2 log 10 = 7r2/(24 log 2 log 10) = 0.97... . In other words, we would 
normally require about an extra 3% in the decimal digits in the input in order 
to obtain the desired number of partial quotients. Nevertheless, even if a is 
not an exceptional number, we cannot claim for sure that a certain preassigned 
number of digits will be sufficient to deliver N partial quotients. 
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There is another important advantage of the direct and the indirect methods 
over the basic method. Suppose, for example, that we wish to compute the first 
10000 partial quotients for a real number a using the basic method. We may 
wisely use 10400 decimal digits for the input value, but it is possible that even 
this delivers only 9990 partial quotients, and we will be forced to use a more 
accurate input value for a in order to obtain the next 10 partial quotients. 
However, with the new input value for the basic method, we will need to re- 
peat all the previous calculations before we are in a position to compute the 10 
new partial quotients. The only other way is to use the previously calculated 
partial quotients to compute also the convergents, and use the last convergent 
together with the new input value to update the complete quotient, but this is 
precisely the indirect method proposed by Lehmer. If we had used the indirect 
method in the first place, we could have divided the process into 21 sections 
by updating the input value with 500 new decimal digits for a in each section, 
or perhaps even 105 sections with only 100 new decimal digits in each section. 
The indirect method therefore allows us to have better control on the precise 
number of partial quotients to be calculated, as well as being a faster algorithm. 
Both the direct and the indirect methods can be halted and be continued again 
without loss. For example, we may wish to stop the calculation when enough 
partial quotients have been delivered, or when there is enough accuracy from 
the output convergents, or even when a preset computing time has been reached. 
Provided that we have retained the last computed partial quotient and the pre- 
vious convergent, the process can always be continued again. It was our search 
for an algorithm which can deliver a precise number of partial quotients that 
led us to the direct algorithm. 

5. THE ALGORITHM 

The following is an algorithm for the direct method in the computation of 
the continued fraction expansion for an algebraic a which has been specified 
by the irreducible polynomial f(t) . 
Step 1. Enter the defining polynomial f(t) for the algebraic number a. 
Step 2. Use any method to find the first two convergents tn = Xn/yn, n = 0, 1, 

for a . 
Step 3. Enter a suitable small positive constant b = b(a). 
Step 4. Enter a termination condition Satisfied. 
Step 5. While NOT Satisfied, Do 

Check that XnYn+l - Xn+lYn = (-1)n+1 
Compute the next (approximate) complete quotient, that is 

at = If (tn)/y Y2lf(tn)I -Yn-I/Yn- 

Set B = max(by2, Yn + 1). 
While Yn < B, and NOT Satisfied, Do 

Replace n +- n + 1. 
Set an = [a'], the next partial quotient. 
Store (or collect relevant information on) an. 
Use an and the last two convergents to compute the new 
convergent tn = XnlYn / 
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Update the previous convergent tn- I = Xn- I /Yn- I . 
Replace a' +- 1/(a!' - an), the next complete quotient. 

Step 6. Process and print out the collected information on the expansion 
for a . 

Step 7. STOP 
We offer the following comments on the algorithm: 

* We need to have at least two convergents as initial values for the iter- 
ative scheme, and these are entered in Step 2. If a is initially badly 
approximable in the sense that its leading partial quotients all have val- 
ues 1, we may need to have more initial convergents, which will then 
ensure that the denominator yn of the convergent is not too small at 
the entry point for the iterations. 

* In Step 3, there is some flexibility in the choice of b = b(a), which can 
be estimated from f'(a) and f"(a), but it works quite well for many 
a by setting b = 1/ 100. The value of b is used to define the control 
value B for the iterative process in Step 5. 

* As it has been explained, the termination condition Satisfied may be 
given in terms of the required number of partial quotients to be com- 
puted, or when the convergent satisfies some error bound condition, or 
when the number of function evaluations in the outer loop in Step 5 
has been reached. 

* The partial quotients an are computed from the basic algorithm in the 
inner loop in Step 5, where they may be stored, or be discarded when 
relevant statistical information on them has been collected. 

* As Lehmer remarked, the equation XnYn+l -xn+lYn = (-_1)n+1 provides 
us with "an almost infallible check", and this is being incorporated just 
before function evaluations. 

* We set B > Yn + 1 to ensure that at least one new partial quotient and 
corresponding convergent are computed in the inner loop. As to the 
choice of the value b, it is possible to set B = y1.9 for robustness, and 
perhaps even some gain in speed. 

* The algorithm can easily be modified so that a' is evaluated to a fixed 
accuracy; see the following paragraph. 

The algorithm for a transcendental number a is similar, but there are some 
important differences. First, f(t) and f'(t) are no longer rational, so that 
the approximate complete quotient a' cannot be computed from the algorithm 
using rational arithmetic. We need to specify the error within which the com- 
putation of the complete quotient a' has to be maintained in each iteration. 
The analysis in ?3 allows us to specify this error to be of the order ynj, which 
will then preserve quadratic convergence. However, the notion of quadratic 
convergence here is being considered in terms of iterations that involves func- 
tion evaluation, which will be relevant only when this evaluation is extremely 
difficult. In practice, it is more time-consuming in having to apply the ba- 
sic continued fractions algorithm when the complete quotient is too accurately 
specified, and it may be better to specify the less severe bound yn 2(1+J) where 
0 < 3 < 1 , and this in turn will require us to set the bound B for the inner loop 
to be yI15 . Although quadratic convergence has been sacrificed by having more 
function evaluations, nevertheless the arithmetic involved in the computation 
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of the initial partial quotients for ' will be less heavily involved, and there is 
usually an overall gain in speed, especially when a large number of terms in the 
expansion is required. Indeed, we may wish to apply the direct algorithm only 
as a device to remove the need for an input value, but otherwise still adopt the 
indirect algorithm by delivering the complete quotient each time to a certain 
fixed accuracy. 

Finally, we mention that A. J. van der Poorten [13] has proposed a 2 x 2 ma- 
trix scheme in the study of continued fractions, which gives some new insight, 
simplification and clarification in the presentation of the theory. Some comput- 
ing time can also be saved by incorporating the scheme in the implementation 
of the algorithms. 

6. COMPUTATION RESULTS 

In comparison with the calculation of decimal expansions of numbers, there 
seem to be very few results on the calculation of continued fraction expansions. 
For the number 7r, there have been many calculations of its decimal expansion; 
see, for example, J. M. Borwein and P. B. Borwein [1]. On the other hand, there 
appear to be only seven efforts in obtaining the continued fraction expansion for 
7 = [ao, al, . ... ], each time with an increasing number N of partial quotients 
an. These are by Archimedes (240 BC) N = 1, Tsu Ching-chih (480) N = 3, J. 
Wallis [17] (1685) N = 33, D. H. Lehmer [9, 10] (1938, 1939) N = 90, 100, 
R. S. Lehman [8] (1959) N = 1986, and K. Y. Choong, D. E. Daykin and 
C. R. Rathbone [3] (1971) N = 21230. Actually, Wallis took the calculation to 
N = 34, making the mistake of giving the value 1 to a34, the correct value for 
which, namely the rather large number 99, was found by Lehmer some two-and- 
a-half centuries later. We should also mention that J. H. Lambert [7] proved 
in 1761 that 7r is irrational, so that the sequence of partial quotients does not 
terminate, and it is of interest to recall that his proof of the irrationality of 7r 
is based on Euler's discovery of the continued fraction expansion for 

(6) e = [2, 1,2, 1, 1,4, 1, 1,6, 1, 1,8, 1,...]. 

Lambert also checked in 1770 the calculation by Wallis up to N = 26. In 
1882 Lindemann proved that 7r is transcendental, but, as far as the behavior 
of the sequence (a,) is concerned, we can only deduce from this that it is not 
periodic. The calculation by Lehman [8] is given in a report in the US Ballistic 
Research Laboratory, and, being unaware of this, G. Lochs [12] (1963) also 
did the calculations up to N = 968. The calculation by Choong, Daykin and 
Rathbone [3] is based on the indirect method with a 25000-decimal input value. 

We now give the result of our calculations of the partial quotients an = 

a(a, n) of the continued fraction expansions for various numbers a. We ex- 
clude ao = [a] in the data, so that the partial quotients an are labeled for 
1 < n < N, and we take N = 1 0000. There is little point in giving the full list- 
ing of the partial quotients for any particular a , since the sequence concerned 
can be obtained from the method discussed in the paper. We offer instead some 
statistical information in the following two tables. In Table 1 we list the number 
of partial quotients taking the values a = 1, 2, ... , 10, and also those satisfy- 
ing 10 < an < 100 and an > 100 in the last two columns. A. Khintchine [6] 
and P. Levy [11] have proved that, for almost all (*, the set of n for which 
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TABLE 1. N =10000 
e a = I a = 2 a = 3 a = 41 a = 5 a = 6 a = 7 a = 8 a1=59 a4 1 1 100 a > 100 

o2 4173 1675 946 636 421 295 240 163 122 118 1060 151 
X2 + X/3 4129 1672 938 601 427 288 238 183 144 117 1115 148 

Xr 4206 1672 882 597 1443 282 224 186 143 123 1113 129 
27r 4133 1712 927 636 402 293 235 172 150 111 1003 126 
7r2 4134 1706 948 581 401 302 232 185 138 117 1111 145 
at 4177 1718 949 578 384 319 196 166 150 113 1103 147 

EOgx 7 4150 1722 969 593 438 275 218 172 135 113 1093 122 
en 4156 1698 I887 583 404 309 I231 201 154 III 1120 146 
log2 4149 1666 905 600 390 334 226 187 142 137 1113 151 
2 V2 4192 1639 933 616 390 278 213 190 135 135 1130 149 
erc 4165 1735 924 563 416 296 1201 190 155 III 1084 160 

e + X 4234 1648 981 572 407 305 211 172 120 114 1104 132 
7,e 4116 1724 943 579 408 318 249 176 130 III 1122 124 

FExpectation 4150 1699 931 D 589 1406 297 227 1179 1145 120 1 1112 142 

an = b has asymptotic density 

d(b) = 1 log ((+1) b = 1,5 2, .. 

This then gives an "expectation" of the frequencies of the values taken by the 
partial quotients for a number ca which is not in the exceptional set in their 
theorem, and we list such expectations corresponding to N = 10000 in the last 
row. 

If ca is not an exceptional number for the results by Khintchine and Levy, 
then, as n -x oc, the two numbers K(a , n) = (aIa2. an )'/n and L(a, n) = 

(Y1Y2 ... Yn)l/In should have the limits K and L given by (4) and (5). In [10] 
Lehmer found that K(7r, 100) = 2.6831468 ... and L(7r, 100) = 3.269202 ... . 
and from these numerical results he strongly suggested that 7r is not an excep- 
tional number. Although we agree with his assessment, nevertheless we wish to 
point out that even if there is a convergence, the rate has to be very slow. It is 
easy to see that, with n = 10000, the change in value of any single partial quo- 
tient will have an effect on the third decimal digit for the value of K(a , n) . In 
fact we found that K(7r, 10000) differs from K by more than K(7r, 100) does. 
The same remark can also be made concerning the convergence of L(a , n), and 
we only record [log1o y2 ] in Table 2, where we also include the largest partial 

TABLE 2. N = 10000 

a max{an: n < N} Missing values for an < 100 K(a, N) [2 log10 YN] 

X_ al99o= 12737 74,86,91,96,97,99,100 2.65553 10224 
_2 + v_ 3 a1638 = 152613 70,96 2.71786 10394 
_______ a431 = 20776 90,91,96 2.66371 10244 

27r a425 = 10387 66,90 2.66321 10228 
_ r2 a1234= 12013 91,92 2.69275 10322 
\/7E a8410= 121115 66,76,78,81,88,93,95,97,98 2.64799 10199 

log X a3803 = 12760 76, 79, 80, 82, 83, 87, 93,98 2.63385 10152 
e___ a8804 = 150283 52,66, 73, 80,96 2.69665 10331 
log 2 a9168 =963664 55,73,76,96,97 2.72269 10414 
2"V a6342 =44122 79,80,81,82,91,94,97,99 2.70430 10368 
eJr a5409 =28656 78,79,91 2.67668 10283 

e + 7r a2720 =2978 79,81,84,99 2.62791 10148 
,,e a9014 = 16323 56,76,80,87,89,95,97,100 2.67602 10271 
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quotient found, and also the values up to 100 which are not taken by a, for 
n < 10000. 

Perhaps we should not pay too much attention to the values of the largest par- 
tial quotients being computed, since it is easy to construct a number, transcen- 
dental, algebraic or rational, with any specified partial quotient at any position. 
Nevertheless, the following is an interesting method of finding a number with a 
large partial quotient. We first give an explanation for the relationship between 
the two large partial quotients a(7r, 431) = 20776 and a(27r, 425) = 10387 
in Table 2. From (1) we see that if x/y is a convergent to a , then the error 
la- x/yl is about 1/ay2, where a is the next partial quotient. It follows that 
if Ply and qlx, then 

pa x/q_ p x P 1 
q _/I 

= 
q 

a 
Y qay2 (pqa)(y/p)2 

which indicates that the fraction x'/y', where x' = x/q, y' = yIp, should be 
a convergent to pa/q, and that the corresponding next partial quotient should 
have a value near pqa. In particular, if a = a(a, no) is already a particu- 
larly large partial quotient for a , and x and y have known divisors q and 
p, then we may expect pa/q to have an even larger partial quotient in the 
neighborhood of no. However, for the number 7r, the denominator y of the 
430th convergent x/y to 7r is an odd number, so that the corresponding large 
value of the partial quotient for 27r is approximately halved instead. From 
Table 2 we also find that a(a, 1638) = 152613 when a = Y2 + v3. More- 
over, on examining the 1637th convergent x/y, we find that y is divisible by 
8, and therefore 8a should have a partial quotient near 8 x 152613, and in 
fact a(8a , 1670) = 1220911. Indeed, we find that 5 divides x, and 24 di- 
vides y, so that 24a/5 will have an even larger partial quotient, and in fact 
a(24a/5, 1662) = 18313683. Our calculations here confirm what is known 
theoretically on the effect of multiplication of a continued fraction by a rational 
number; see, for example, [4, 15 and 13]. 

The results for the two algebraic numbers , X + V3 were obtained by 
the direct method, implementing the algorithm in ?5. The results for 7r and 
27r were obtained by employing a modification of the algorithm, using the same 
transcendental function sin t, but with different initial values. Similarly, the 
results for 7r2, v/7, log 7r, el and log2 were obtained from sin(v/i), sin(t2), 
sin(et), sin(log t) and et - 2, respectively. The remaining four numbers were 
dealt with by the indirect method. 

In [10] Lehmer stated that K(e, n) - Cn1/3 as n -+ oc, where C satisfies 
3eC3 = 2, and this can be proved using the explicit expansion (6). Therefore, 
the number e lies in the exceptional set in the theorems of Khintchine and 
Levy. It is also clear that quadratic irrationals are exceptional numbers, but 
we have not found from our computations any algebraic number with degree 
exceeding 2 that shows any sign of being an exceptional number, let alone one 
with a sequence of bounded partial quotients. D. K. L. Shiu has proposed the 
amusing but intractable problem of determining whether Khintchine's constant 
K itself is not an exceptional number; in other words, whether K(K, n) -+ K 
as n -x oc. All we wish to say is that the numerical value for K given in (4) 
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allows us to write 

K = [2, 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 
1, 1, 1,90,2, 1, 12, 1, 1, 1, 1,5,2,6, 1,6,...], 

so that K(K, 35) = 32/7804/35 = 2.25848.... 
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